

A-LEVEL **Physics**

PHYA5-1 – Nuclear and Thermal Physics Mark scheme

2450 June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2017 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Question	Answers	Additional Comments/Guidance	Mark	ID details
1 (a)	$\begin{tabular}{ c c c c c } \hline equation showing the interaction that forms $\frac{32}{15}P$ & tick all correct equations $\frac{31}{15}P + \frac{2}{1}H \rightarrow \frac{32}{15}P + \frac{1}{0}n$ & $\frac{31}{15}P + \frac{2}{1}H \rightarrow \frac{32}{15}P + \frac{1}{1}H$ & $\frac{31}{15}P + \frac{2}{1}H \rightarrow \frac{32}{15}P + \frac{4}{2}\alpha$ & $\frac{31}{15}P + \frac{2}{1}H \rightarrow \frac{32}{15}P + \frac{4}{2}\alpha$ & $\frac{31}{15}P + \frac{2}{1}H \rightarrow \frac{32}{15}P + \frac{4}{2}\alpha$ & $\frac{31}{15}P + \frac{2}{1}H \rightarrow \frac{32}{15}P + \frac{4}{1}p$ & $Tick$ the second and fourth line for a mark \scrimes $\lambda$$		1	
1 (b)	kinetic energy (lost) by the hydrogen isotope / deuterium approaching the nucleus / phosphorous nucleus is equal to the potential energy (gain) \checkmark $6.5 \times 10^{-13} = \frac{1}{4\pi \times 8.85 \times 10^{-12}} \times \frac{15 \times 1.6 \times 10^{-19} \times 1 \times 1.6 \times 10^{-19}}{r} \checkmark$ $r = 5.3 \times 10^{-15} \text{ (m) } \checkmark$	First mark can come form a clear equation with symbols or substitution into the equation. (note kinetic energy may be implied by the language used continuing from the question)	3	
Total			4	

Question	Answers	Additional Comments/Guidance	Mark	ID details
2 (a)	probability of decay per unit time/given time period OR fraction of atom <u>s</u> decaying per second OR nuclear decay constant is the constant of proportionality in $\frac{dN}{dt} \propto N \checkmark$ (the proportion may be given in words)		1	
2 (b)	use of $T_{\frac{1}{2}} = \frac{ln2}{\lambda}$ $T_{\frac{1}{2}} = \ln 2/3.84 \times 10^{-12} \text{ s} \checkmark (1.805 \times 10^{11} \text{ s})$ $= (1.805 \times 10^{11}/3.15 \times 10^{7}) = 5730 \text{ year } \checkmark$ answer given to 3 sf \checkmark	If rounding occurs at the first calculation the final answer comes out as 5750 yr. 3 sf mark stands alone.	3	
2 (c)	number of nuclei = $N = 3.50 \times 10^{23} \times 1/10^{12} \checkmark$ (= 3.50 × 10 ¹¹ nuclei) (using $\frac{\Delta N}{\Delta t} = -\lambda N$) rate of decay = 3.84 × 10 ⁻¹² × 3.50 × 10 ¹¹ = 1.34 Bq \checkmark	No AE for a power of 10 error. The final mark can come from substitution or a calculation to at least 3 sf.	2	

Question	Answers	Additional Comments/Guidance	Mark	ID details
2 (d)	$(N = N_0 e^{-\lambda t} \text{ and activity is proportional to the number of nuclei} A \propto N \text{ use of } A = A_0 e^{-\lambda t})$ $0.85 = 1.34 \times e^{-3.84 \times 10^{-12} \times t} \checkmark$ $t = (\frac{ln(\frac{1.34}{0.85})}{3.84 \times 10^{-12}}) = 1.19 \times 10^{11} \text{ s} \checkmark (1.185 \times 10^{11} \text{ s})$ $t = 3760 \text{ year }\checkmark$	If 1.4 Bq is used answer become 1.30×10^{11} s and 4130 yr. If 1.3 Bq is used answer become 1.11×10^{11} s and 3510 yr. s to yr conversion is a stand alone mark.	3	
2 (e)	the axe handle may have been made with the wood some time after the tree was cut down the background activity is high compared to the observed count rates the count rates are <u>low</u> or sample size/mass is <u>small</u> or there is statistical variation in the recorded results possible contamination (not by radiation) uncertainty in the ratio of carbon-14 in carbon thousands of years ago any two \checkmark		2	
Total			11]

Question	Answers	Additional Comments/Guidance	Mark	ID details
3 (a)	the amount of energy required to separate a nucleus ✓ into its separate <u>neutrons and protons</u> OR <u>nucleons</u> ✓ (or energy released on formation of a nucleus ✓ from its separate <u>neutrons and protons</u> OR <u>nucleons</u> ✓)	 1st mark is for correct energy flow direction 2nd mark is for binding or separating nucleons wording must not imply the removal of a single nucleon. (nucleus is in the question but a reference to an atom will lose the mark) ignore discussion of SNF etc both marks are independent 	2	
3 (b) (i)	$4 {}^{1}_{0}n \ or \ {}^{1}_{0}n + {}^{1}_{0}n + {}^{1}_{0}n + {}^{1}_{0}n + {}^{1}_{0}n \checkmark$	Must see subscript and superscripts	1	
3 (b) (ii)	binding energy of U = $233 \times 7.60 \checkmark$ (= 1771 MeV) binding energy of Kr and Ba = $91 \times 8.55 + 139 \times 8.37 \checkmark$ (= 1941 MeV) energy released (=1941 - 1771) = 170 (MeV) \checkmark (170 × 1.60 × 10 ⁻¹³) = 2.72 × 10 ⁻¹¹ (J)	1st mark is for 233×7.60 <u>seen anywhere</u> 2nd mark for $91 \times 8.55 + 139 \times 8.37$ OR 1941 but this is only given if there are no extra terms or conversions present (ignore which way round the subtraction is made) A correct answer can score 3 marks	3	
3 (b)(iii)	loss of mass (= E / c^2) = 2.72 × 10 ⁻¹¹ / (3.00 × 10 ⁸) ² ✓ = 3.02 × 10 ⁻²⁸ (kg) ✓ OR = 170 / 931.5 (u) ✓ (= 0.183 u)	Both marks for correct answer only allow CE from (b)(ii)	2	

$= 3.03 \times 10^{-28}$ (kg) \checkmark		
		-

Question	Answers Additional Comments/Guidance		Mark	ID details
3 (c)	Fission fragments are (likely) to be above/to the left of the line of stability \checkmark	Ignore any reference to α or γ emission. A candidate must make a choice for the first two		
	fission fragments are (likely) to have a larger N/Z ratio than stable nuclei	Stating that there are more neutrons than protons is not enough for a mark.	3	
	OR	(look at diagram)	0	
	fission fragments are neutron rich owtte \checkmark	1st mark reference to graph		
		2nd mark – high N/Z ratio or neutron rich		
	and become neutron or β - emitters \checkmark	3rd mark beta minus Note not just beta.		
Total			11	

Question	Answers		Additional Com	ments/Guidance	Mark	ID details
4 (a) (i)	(use of mean kinetic energy = $3/2 \text{ k T}$) = $3/2 \times 1.38 \times 10^{-23} \times (273 + 25.0) \checkmark$ $6.17 \times 10^{-21} \text{ (J) } \checkmark$				2	
4 (a) (ii)	total internal energy = $6.17 \times 10^{-21} \times 1.5$ 5.57 × 10 ³ (J) \checkmark	$50 \times 6.02 \times 10^{23} =$	Allow ecf from 4 (a)(ii)		1	
4 (b)					Max 6	
Marks awar	ded for this answer will be determined by	the Quality of Written (Communication (QWC) as wel	I as the standard of the scienti	fic respor	nse.
	Level 1 (1 – 2 marks)	Level 2	(3 – 4 marks)	Level 3 (5 – 6 m	arks)	
The inform	Low Level		nediate Level	High Level		0.110 #
	nation conveyed by the answer is	he less well organis	red and not fully coherent	is clearly organised logical	by the an	SWEI
coherent.	There is little correct use of specialist	There is less use of	specialist vocabulary. or	using appropriate specialis	t vocabul	arv
vocabular	y. The form and style of writing may	specialist vocabular	ry may be used	correctly. The form and sty	le of writi	ng is
be only pa	artly appropriate. There will be a few	incorrectly. The forr	n and style of writing is	appropriate to answer the	question.	Before
of the gui	dance points mentioned, but there	less appropriate. Be	efore taking the above into	taking the above into consi	deration a	а
will be litt	e cohesion in the writing. Before	consideration a can	didate making three or	candidate making five or m	ore releva	ant
taking the	e above into consideration a	tour relevant statem	nents from any of the three	statements from two or thre	e groups	5 Of Josed
candidate making two or less relevant groups of statements from any of the three groups of		groups or marking p	If all the statements come	in this level. Six statements	will be p	
marking points listed below is placed in this		from only one arour	a score of 3 marks will	three groups scores 6 mar	s but if fi	ve or
level. One point for one mark and two points be given. Four po		be given. Four poin	ts from at least two	more only come from two	groups a	
for two marks groups will score		groups will score 4	marks.	maximum score of 5 may b	e awarde	ed.
				Significant errors in the phy	/sics will	
				exclude a candidate from t	his top lev	vel.

Statements expected in a competent answer should include some of the following marking points.

Group A

molecules are in rapid random motion/many molecules are involved molecules change their momentum or accelerate on collision with the walls

Group B

reference to Newton's 2nd law either F = ma or F = rate of change of momentum

reference to Newton's 3rd law between molecule and wall relate pressure to force P = F/A

Group C

mean square speed of molecules is proportional to temperature as temperature increases so does change of momentum or change in velocity

there is a shorter time between collisions as the temperature increases

the pressure increases as the temperature increases.

Total		9

Question	Answers	Additional Comments/Guidance	Mark	ID details
5 (a)	(heat supplied by glass = heat gained by water) (use of $m_g c_g \Delta T_g = m_w c_w \Delta T_w$) $0.200 \times 840 \times (28.0 - T_f) = 0.250 \times 4190 \times (T_f - 2.0) \checkmark$ $T_f = 5.6 (°C) \checkmark$	1 st mark for RHS or LHS of substituted equation 2 nd mark for 5.6 °C Alternatives: 6 °C is substituted into equation (on either side shown will get mark) ✓ resulting in 3696 J~4190 J ✓ or 6 °C substituted into LHS ✓ (produces Δ <i>T</i> = 3.5 °C and hence) = 5.5 °C ~ 6 °C ✓ 6 °C substituted into RHS ✓ (produces Δ <i>T</i> = 25 °C and hence) = 3 °C ~ 6 °C ✓ (large difference is a result of (<i>T</i> _f - 2.0) having a large relative error) or other alternatives using relative changes in temperature for example from 2 °C	2	

Question	Answers	Additional Comments/Guidance	Mark	ID details
5 (b)	(heat gained by ice = heat lost by glass + heat lost by water) (heat gained by ice = $m \triangle T + ml$) heat gained by ice = $m \times 4190 \times 2.0 + m \times 3.34 \times 10^5 \checkmark$ (heat gained by ice = $m \times 342400$) heat lost by glass + heat lost by water = $0.200 \times 840 \times (5.6 - 2.0) + 0.250 \times 4190 \times (5.6 - 2.0) \checkmark$ (= 4376 J) m (=4376 / 342400) = 0.013 (kg) \checkmark or (using water returning to its original temperature) (heat supplied by glass = heat gained by ice) (heat gained by glass = $0.200 \times 840 \times (28.0 - 2.0)$) heat gained by glass = 4368 (J) \checkmark (heat used by ice = $m \triangle T + ml$) heat used by ice = $m(4190 \times 2.0 + 3.34 \times 10^5) \checkmark$ (= m(342400)) m (=4368/342400) = 0.013 (kg) \checkmark	NB correct answer does not necessarily get full marks 3 rd mark is only given if the first 2 marks are awarded the first two marks are given for the formation of the substituted equation not the calculated values if 6 °C is used the final answer is 0.014 kg or 0.015 kg.	3	
Total			5	