## 

## AS **Physics**

PHYA1 – Particles, quantum phenomena and electricity Mark scheme

2450 June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2017 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

| Question    | Answers                                                                                                                               | Additional Comments/Guidance                                           | Mark | ID<br>details |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|---------------|
| 1 (a) (i)   | particles that experience the strong (nuclear) force/interaction $\checkmark$                                                         | Condone additional mention of other interactions not unique to hadrons | 1    |               |
| 1 (a) (ii)  | (particles composed of) three quarks ✓                                                                                                | allow qqq or correct example                                           | 1    |               |
| 1 (a) (iii) | quark and antiquark $\checkmark$                                                                                                      | Allow symbols or correct example                                       | 1    |               |
| 1 (b)       | similarity: but the same (rest) mass or rest energy $\checkmark$ difference: opposite quantum states eg charge $\checkmark$           | Allow 1 mark for stating mass (similarity) and charge (difference)     | 2    |               |
| 1 (c)       | charge/Cbaryon<br>numberquark<br>structureantiproton $-1.6 \times 10^{-19}$ $-1$ $\overline{u} \cdot \overline{u} \cdot \overline{d}$ | 2 marks all 3 correct<br>1 mark at least 2 correct                     | 2    |               |
| 1 (d) (i)   | weak interaction ✓<br>strange not conserved ✓                                                                                         | Allow: there is a change/decay of quark<br>(flavour)                   | 2    |               |
| 1 (d) (ii)  | <b>any two</b><br>eg charge<br>baryon number<br>(muon) lepton number                                                                  |                                                                        | 2    |               |
| Total       |                                                                                                                                       |                                                                        | 11   | ]             |

| Question    | Answers                                                                                                                                                                                   | Additional Comments/Guidance                                                                            | Mark | ID<br>details |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|---------------|
| 2 (a)       | repulsive then attractive $\checkmark$<br>short range (if distance quoted must be of order fm) $\checkmark$<br>correct distance for cross over (accept range $0.1 - 1.0$ fm) $\checkmark$ |                                                                                                         | 3    |               |
| 2 (b) (i)   | (It is a) helium nucleus (emitted from an unstable nucleus) / accept $2p$ and $2n$ $\checkmark$                                                                                           | Not helium atom / ${}_{2}^{4}$ He or ${}_{2}^{4}\alpha$ not enough<br>Condone nuclei instead of nucleus | 1    |               |
| 2 (b) (ii)  | ${}^{238}_{92} \rightarrow {}^{234}_{90} \text{Th} \checkmark + {}^{4}_{2} \alpha \checkmark$                                                                                             |                                                                                                         | 2    |               |
| 2 (c) (i)   | same atomic number/proton number ✓<br>different number of neutrons/nucleons ✓                                                                                                             | Condone mention of electrons                                                                            | 2    |               |
| 2 (c) (ii)  | weak (interaction) ✓                                                                                                                                                                      |                                                                                                         | 1    |               |
| 2 (c) (iii) | $(8 \times 2 =) 16 \text{ seen} \checkmark$<br>(92-16 = ) <b>76</b> Or 92 - 82 = 10 $\checkmark$<br><b>6</b> (beta decays) $\checkmark$                                                   |                                                                                                         | 3    |               |
| Total       |                                                                                                                                                                                           |                                                                                                         | 12   | ]             |

| Question | Answers                                                                                                                                                                                                                                                                                                                                | Additional Comments/Guidance                                                                                                                                                                                                | Mark | ID<br>details |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 3 (a)    | Diffraction ✓                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             | 1    |               |
| 3 (b)    | (use of $\lambda = h/mv$ )<br>$\lambda = 6.63 \times 10^{-34}/(9.11 \times 10^{-31} \times 2.7 \times 10^5) \checkmark$ condone POT error in<br>substitution<br>$\lambda = 2.7 \times 10^{-9} \text{ m} \checkmark$<br>2 sig figs $\checkmark$ (to score this mark, for an incorrect answer,<br>working some working needs to be seen) | Correct answer alone (to 2 sig figs) gets 3 marks                                                                                                                                                                           | 3    |               |
| 3 (c)    | v=2.7 × 10 <sup>5</sup> / 207 $\checkmark$<br>v=1300 m s <sup>-1</sup> $\checkmark$<br>OR<br>Use of $\lambda = h/mv$<br>with v as subject of correct rearrangement $v = h/m\lambda$ or<br>substitution $\checkmark$<br>v=1300 m s <sup>-1</sup> $\checkmark$                                                                           | Correct answer alone gets 2 marks<br>Where answer quoted to 4 sig figs then range<br>is from 1302 to 1304<br>with CE from 3(b)<br>with CE from 3(b)<br>Where answer quoted to 4 sig figs then range<br>is from 1302 to 1304 | 2    |               |
| Total    |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                             | 6    |               |

| Question | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Additional Comments/Guidance                             | Mark  | ID<br>detail |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------|--------------|
|          | The candidate's writing should be legible and the spelling accurate for the meaning to be clear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , punctuation and grammar should be sufficiently         |       |              |
|          | The candidate's answer will be assessed holistically. The ans the following criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wer will be assigned to one of three levels according to |       |              |
|          | High Level (Good to excellent): 5 or 6 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |       |              |
|          | 4 (a) The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question.<br>The candidate provides a comprehensive and coherent description which includes a clear explanation of constant energy level differences and how atoms can be excited by electron collisions. The link between the energy of a photon and its frequency should be clear. The description should include a clear explanation of the reason atoms of a given element emit photons of a characteristic frequency <b>or</b> there is a clear link between constant energy differences and photon frequency/wavelength (eg E=hf). The candidate should relate the energy <b>difference</b> between levels to the energy of emitted photons and state the energy difference is fixed/constant. |                                                          |       |              |
| 4 (a)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | Max 6 |              |
|          | Photon energy = energy difference between levels during de-e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | excitation                                               |       |              |
|          | Certain frequencies = certain energy photons= certain energy differences = certain energy levels available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |       |              |
|          | Answer addresses both aspects of quesion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |       |              |

| Intermediate Level (Modest to adequate): 3 or 4 marks<br>The information conveyed by the answer may be less well organised and not fully coherent. There is less use of<br>specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less<br>appropriate.<br>The candidate provides an explanation of energy levels and how excitation takes place by electron collision with |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The information conveyed by the answer may be less well organised and not fully coherent. There is less use of specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less appropriate.<br>The candidate provides an explanation of energy levels and how excitation takes place by electron collision with                                                                |
| The candidate provides an explanation of energy levels and how excitation takes place by electron collision with                                                                                                                                                                                                                                                                                                              |
| atomic/orbital electrons. The candidate explains how an orbital/atomic electron loses energy by emitting a photon.                                                                                                                                                                                                                                                                                                            |
| Clear explanation of electron movement during excitation<br>Clear explanation of electron movement during de-excitation with link to emission                                                                                                                                                                                                                                                                                 |
| Answer addresses the process of excitation / de-excitation / photon emission                                                                                                                                                                                                                                                                                                                                                  |
| Low Level (Poor to limited): 1 or 2 marks                                                                                                                                                                                                                                                                                                                                                                                     |
| The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only partly appropriate.                                                                                                                                                                                                           |
| Excitation of atom / De-excitation of atom / Links definite wavelengths to photons of discrete energy                                                                                                                                                                                                                                                                                                                         |
| Incorrect, inappropriate of no response: 0 marks                                                                                                                                                                                                                                                                                                                                                                              |
| No answer or answer refers to unrelated, incorrect or inappropriate physics.                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |

|            | The explanation expected in a competent answer should include a coherent account of the significance of discrete energy levels and how the bombardment of atoms by electrons can lead to excitation and the subsequent emission of photons of a characteristic frequency.<br>electrons bombard atoms of vapour and give energy to electrons in atom electrons in atoms move to a higher energy level atoms are excited atomic electrons move down to lower energy levels losing energy by emitting photons photons have energy hf = energy difference between the levels that electron falls between Only certain photons (of characteristic frequencies) emitted from atoms of a particular element Only certain transitions available to electron this is because atoms have discrete energy levels which are associated with particular energy values |                                                                                            |    |         |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----|---------|
| 4 (b) (i)  | (minimum) energy required to (completely) remove an electron from atom/hydrogen (where atom is in its ground state) ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 mark for partial statement<br>Must be clear that electron is removed from atom           | 2  |         |
|            | minimum energy <b>and</b> ground state/lowest energy level ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 <sup>nd</sup> mark for detail added to statement 2 <sup>nd</sup> mark dependent on first |    |         |
| 4 (b) (ii) | 13.6 × 1.6 × $10^{-19} \checkmark$<br>2.18 × $10^{-18}$ (J) $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Correct answer alone gets 2 marks                                                          | 2  |         |
| Total      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            | 10 | <u></u> |

| Question   | Answers                                                                                                                                                                                                                                                                  | Additional Comments/Guidance                                      | Mark | ID<br>details |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|---------------|
| 5 (a)      | Increased lost volts (owtte)√                                                                                                                                                                                                                                            |                                                                   | 2    |               |
|            | (Terminal pd decreases because) $V = \varepsilon - Ir \text{ or}$<br>(Terminal pd decreases because) emf is fixed <b>and</b> terminal pd<br>is emf – lost volts $\checkmark$                                                                                             |                                                                   |      |               |
| 5 (b) (i)  | y – intercept 1.52 V (± 0.01 V) ✓                                                                                                                                                                                                                                        |                                                                   | 1    |               |
| 5 (b) (ii) | identifies gradient as $r$ <b>OR</b> use of equation by substitution or<br>rearrangement with r as subject $\checkmark$<br>substitution to find gradient <b>OR</b> substitution into equation with r<br>as subject $\checkmark$<br>$r = 0.45 \pm 0.02 \Omega \checkmark$ | Allow <b>one</b> error in data read off graph<br>in substitutions | 3    |               |
| 5 (c) (i)  | same intercept $\checkmark$ double gradient (must go through 1.25, 0.40 ± 1.5 squares) $\checkmark$                                                                                                                                                                      | Other points (1,0.6) or (1.5,0.16)                                | 2    |               |
| 5 (c) (ii) | same intercept horizontal line $\checkmark$                                                                                                                                                                                                                              |                                                                   | 1    |               |
| 5 (d) (i)  | (use of $Q = It$ )<br>$Q = 1.2 \times 25 = 30 \checkmark$<br>C $\checkmark$ condone Coulombs                                                                                                                                                                             |                                                                   | 2    |               |

| 5 (d) (ii) | use of $P = I^2 r$ by substitution $P = 1.2^2 \times 0.45 \checkmark$<br>$P = 0.65 \text{ W }\checkmark$<br>Or<br>Use of $P = \frac{\text{Ir} \times Q}{25} \checkmark$<br>$P = 0.65 \text{ W }\checkmark$ | CE from (b) (ii)<br>CE from (b) (ii) | 2  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----|--|
| Total      |                                                                                                                                                                                                            |                                      | 13 |  |

| Question  | Answers                                                                                                                                                                                                                                                                            | Additional Comments/Guidance | Mark | ID<br>details |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|---------------|
| 6 (a)     | a non-ohmic component does not have a constant resistance /<br>a non-ohmic component does not obey Ohm's Law / pd across<br>this component is not (directly) proportional to current in the<br>component                                                                           |                              | 1    |               |
| 6 (b) (i) | attempt to make curved graph symmetric in two opposite<br>quadrants ✓<br>curve of decreasing positive gradient with increasing V<br>(positive quadrant), must be through origin (within 2mm) must<br>have no linear section, must have no plateau, must have no<br>turning points√ |                              | 2    |               |

| 6 (b) (ii) | resistance increases (as pd increases/current increases) $\checkmark$                                                   | Condone reference to gradient | 1 |   |
|------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|---|---|
| 6 (c) (i)  | (use of $P = V^2/R$ ) 24 = 36/R or rearrangement with R as<br>subject $\checkmark$<br>R = 1.5 ( $\Omega$ ) $\checkmark$ |                               | 2 |   |
| 6 (c) (ii) | reference to temperature change ✓<br>(resulting in) a lower resistance ✓<br>(hence) power rating would be greater ✓     |                               | 3 |   |
| Total      |                                                                                                                         |                               | 9 | ] |

| Question   | Answers                                                                                                                                                                                                    | Additional Comments/Guidance                                                                                                                             | Mark | ID<br>details |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 7 (a) (i)  | adding resistance values 90 (k $\Omega$ ) or<br>$I = 9.0/(45\ 000+39\ 000+6000)$ or<br>$I = \frac{9}{\text{their R}}$ or<br>$I = \frac{9}{90}$ (POT) $\checkmark$<br>$1.0 \times 10^{-4}$ (A) $\checkmark$ | Their R must be determined by a recognisable calculation (resistors in parallel or error in resistors in series) before can be credited in $I = V/R$ sub | 2    |               |
| 7 (a) (ii) | V=1.0 $\times$ 10 <sup>-4</sup> $\times$ 6000 $\checkmark$ condone POT error0.60 (V) $\checkmark$ condone 1 sf answerORv=6 x 9 /90 $\checkmark$ condone POT error0.60 (V) $\checkmark$ condone POT error   | CE from (i)<br>BALD answer full credit                                                                                                                   | 2    |               |
| 7 (b)      | resistance of LDR decreases√<br>reading increase because <u>greater proportion/share</u> of the<br>voltage across R OR higher current√                                                                     | need first mark before can qualify for second                                                                                                            | 2    |               |

|       | I (= $0.82/6000$ ) = $1.37 \times 10^{-4}$ (A) or<br>V <sub>107</sub> = $\varepsilon$ = their V <sub>108</sub> = their V <sub>8</sub> $\checkmark$                                      | Condone POT error |   |   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|---|
| 7 (c) | pd across variable resistor = $(9.0-0.82 - 4500 \times 1.37 \times 10^{-4} =)$<br>7.56 (V) $\checkmark$<br>(R=7.56/1.37 × 10 <sup>-4</sup> =) 5.5(4) × 10 <sup>4</sup> (Ω) $\checkmark$ | Condone POT error | 3 |   |
| 7 (0) | OR<br>I(= 0.82/=6000 )= $1.37 \times 10^{-4}$ (A) or<br>R <sub>var</sub> = their R <sub>total</sub> - R <sub>LDR</sub> - R $\checkmark$                                                 | Condone POT error | 5 |   |
|       | $R_{total} = 9.0/1.37 \times 10^{-4} \text{ or}$<br>$R_{total} = 65\ 853\ \Omega  (\text{or } 65693 \text{ or } 64285 \text{ or } 66000)\checkmark$                                     | Condone POT error |   |   |
|       | $R (= 65\ 853 - 4500 - 6000) =)5.5(4) \ge 10^4 (\Omega) \checkmark$                                                                                                                     |                   |   |   |
| Total |                                                                                                                                                                                         |                   | 9 | ] |